Voice Recognition FTW!

Dr. Maria Aretoulaki
DialogCONNECTION Ltd, UK
maria@dialogconnection.com
@dialogconnection
@ar3toul4ki

Monday 13th February 2012, Cornerhouse
Voice Recognition Apps

- Digital Dictation
 - Medical / Legal transcription
 - Speech-to-SMS, Speech-to-Tweet

- Call Centre automation
 - Call routing to the right Dept.
 - Voice Self-Service (telephone banking)

- Speech-activated device control
 - Smartphones (Vlingo, SIRI)
 - Game consoles (MS XBox 360 Kinect)
Voice Recognition App Types

- **Speaker-dependent** can only recognise a single person / speaker
 - dictation systems
 - PC-based, hand-held
 - e.g. Medical dictation, legal dictation
 - Mobile phone control (oldskool / built-in)
 - Voice dialling, voice search through your mp3s
 - You can talk FREELY to some extent!
Voice Recognition App Types

- **Speaker-dependent**: can be trained in as little as 5 minutes (max. 20mins)
 - speaking longer / shorter phrases
- work quite well with your voice
 - even if you’ve got a cold or if you speak softer than usual
- Don't work with your mates though!
 - have to be retrained in order to work with a different (single) speaker
Voice Recognition App Types

Speaker-independent apps can recognise anyone speaking the language

- Automated helplines
- Voice self-service
 - Cloud-based speech recognition
 - Works from any phone and for any speaker

- **BUT Restricted domain**
 - You can only talk about specific things (flight booking, benefit claims, online shopping)
Voice Recognition App Types

- **Enter smartphone apps!**
 - Google, SIRI

- Speaker-independent voice-to-text
 - Cloud-based speech recognition
 - Works from any phone and for any speaker

- Unlimited domain, general vocabulary
 - You can talk about anything as long as it's in the general dictionary for that language
 - “SIRI, will you marry me?”
 - “SIRI, where can I get a good Chinese near here?”
Voice Recognition Apps

- Speech-to-text / voice-to-text services, esp. in the context of mobile apps
 - Google voice search on smartphones
 - voice dialling your contacts
 - voicemail to sms / email
 - voice-to-sms, voice-to-email
 - Speech your Tweet / Facebook status
Voice Recognition App Types

- **Speaker-independent**: work for everyone off the shelf (already trained on billions of data over several years)
- No need for (re)training!
- Sensitive if you’ve got a strong regional or foreign accent, if you've got a cold or speak softer than usual (Scots in a voice-activated Lift: ELEVEN!)
What is Voice Recognition?

- Speech-to-text conversion
- Spoken words → written words
- Continuous wave signal → text string of separate words
What is Voice Recognition?

Speech signal for ".. and sadly crime experts predict that one day even a friendly conversation between mother and daughter will be conducted at gunpoint" (from the Channel 4 comedy series "Brass Eye" - Season 1)
What is Voice Recognition?

- Stream of sound (spoken words)
 - /iwanttospeaktosomeoneataaccounts/
- → written representation of those words
 - *I want to speak to someone at Accounts*
- → user intention
 - Forward call to Accounts Dept.
- → next app action or prompt
 - connects you to the right person
The Voice Recognition Process

- Voice Recognition is NOT an exact science
- Even among humans, voice recognition is fraught with misunderstandings or incomplete understanding
The Voice Recognition Process

- How many times have you had to repeat your name to someone?
- How many times have you had someone cracking up with laughter, because they thought you said something different to what you actually said?

- no wonder that computers do it even less well
- It’s all guesswork really!
The Voice Recognition Process

Voice recognition is usually based on a “lexicon”

- A text representation of all relevant words and their phonetic “transcription” (pronunciation)
 - Apply → @plai
 - Applicant → Aplik@nt
- All the ways that people are most likely to pronounce this specific word
The Voice Recognition Process

- Regional accents
 - The same word is pronounced completely differently depending on whether you are from London, Liverpool, Newcastle, Edinburgh, Dublin, Sydney, New York, or New Orleans

- Foreigners speaking the language
 - The very same English letter combinations and word will sound even more different when spoken by a Greek, a German or a Japanese native speaker
The Voice Recognition Process

- recognition lexica are augmented with additional “pronunciations” for each problematic word
 - 3 different versions of the same word spoken by different people are still recognised as one and the same word! (Yay!)

- only for words relevant to your specific app (and domain) and for accents representative of your end-user population
The Voice Recognition Process

If an app is going to be used mainly in England, you're better off covering Punjabi and Chinese pronunciations of your English app words rather than Japanese or German variants.

- There will of course be Japanese and German users of your system, but they represent a much smaller percentage of your user population and we can't have everything!!
The Voice Recognition Process

- Recognition is usually based on a "lexicon"
- but the whole process is actually statistical
 - The recogniser has to figure out what you’re saying, chopping this wave signal up into parts, each representing a word that makes sense in the context of the surrounding words.
The Voice Recognition Process

- Unfortunately, the same signal can potentially be chopped up in several different ways
- each representing a different string of words
- and of course a different meaning!
The Voice Rec Process

“How to recognise speech” vs “How to wreck a nice beach”!
The Voice Recognition Process

- Ambiguity of interpretation
 - “How to recognise speech”
 - OR
 - “How to wreck a nice beach” !!!

- Thankfully, the app usually defines the domain (science vs holidays)

- Which in turn defines lexicon & grammar
 - “Recognise” + “speech” are more likely than “wreck” + “beach”
Manual Grammar-based Rec

- hand-crafted **lexica**: words + their pronunciations
- hand-crafted **grammars**: word combos that make up legal sentences in the language
- “manual” approach is sufficient for very **limited domains** (e.g. ordering a printer or getting your account balance)
 - Lexica and grammars describe most relevant phrases that are likely to be spoken by the user population
 - Any other phrases will be just irrelevant one-offs that can be safely(?) ignored
Statistical Voice Recognition

- For anything more complex and advanced (smartphone apps)
- Collecting large amounts of real-world speech data (human-human dialogues, human-machine dialogues) for training
- Machine learning of the most likely and meaningful combinations of sounds for that language
- Much more robust and accurate
Statistical Voice Recognition

- much better coverage of what people actually say (descriptive)
 - Vs what the developer thinks that people should say (prescriptive)
- They can accurately predict sound and word combinations that could not have been pre-programmed in a hand-crafted grammar!
Statistical Recognition Grammar

the real world vs the ideal world

- coverage
 - synonyms vs limited keywords;
 - spontaneous speech [erm, uhm, I'd like – tell me …] vs grammatical sentences
 - Colloquialisms vs „proper English“

- Grammar rigidity
 - Whole sentences vs single command words
Manual Voice Recognition Wins!

- Automated **Call Centre apps** use the **manual** approach
 - Statistical Data collection and data analysis is very time-consuming
 - Data cost and data privacy issues are often prohibitive

- **Smartphone apps** are based on the **statistical** approach
 - Only works for standard language use (feta vs fetish!)
 - Everything can be a wild guess!
The Future: Voice Assistants with an attitude!

- Context-based voice recognition FTW!
 - Robust statistical recognition + device / use context and user data
 - voice recognition → intention understanding → reading your soul? :)
 - Reaction → initiative and self-activation!
 - Unsolicited (!) Reminders, warnings, recommendations, suggestions
 - Multimodality, multi-device, multi-location
A good Voice recognition app

- Usability
 - Simple to use, intuitive, self-explanatory, learnable

- User acceptability
 - feeling understood (without expecting too much off the system: „It's better to be a good machine than a bad person“) and served
 - Liking the app and wanting to come back!
 - At the very least, the user should NOT feel irritated!